Chernobyl, three decades on

radiationRadiation sign at Chernobyl image via Shutterstock.

From: Steven Powell, University of South Carolina  Published April 26, 2016 06:45 AM

It was 30 years ago that a meltdown at the V. I. Lenin Nuclear Power Station in the former Soviet Union released radioactive contaminants into the surroundings in northern Ukraine. Airborne contamination from what is now generally termed the Chernobyl disaster spread well beyond the immediate environs of the power plant, and a roughly 1000-square-mile region in Ukraine, Belarus and Russia remains cordoned off, an exclusion zone where human habitation is forbidden.

The radiation spill was a disaster for the environment and its biological inhabitants, but it also created a unique radio-ecological laboratory. University of South Carolina professor of biological sciences Tim Mousseau and longtime collaborator Anders Møller of the CNRS (France) recognized that the Chernobyl Exclusion Zone, which comprises areas with a wide range of background radiation levels, was essentially the first place in the world where it would be possible to study the effects of ionizing radiation on animals living in the wild.

Since the atomic bomb was developed during WWII, laboratory testing has been used to assess toxicological effects of ionizing radiation on life, but Mousseau and Møller wanted to examine the effects on free-ranging organisms. In contrast to their laboratory brethren, wild animals have to forage for food and fend for themselves, likely leaving them more vulnerable to new stressors. With that in mind, Mousseau and Møller began studying the natural inhabitants of the Chernobyl Exclusion Zone in 2000. Their scope expanded after Japan’s Fukushima disaster in 2011, and they have established the USC Chernobyl + Fukushima Initiative, through which they and colleagues have now published more than 90 peer-reviewed papers.

Their work has shown a wide range of damaging effects to wildlife that result from chronic radiation exposure, even when the exposure is at low levels.

“As a starting point for our studies of animal populations, we took our cue from the medical literature—one of the first effects observed was the presence of cataracts in the eyes of people exposed to energy from atomic bombs,” Mousseau says. “And we found that both birds and rodents show elevated frequencies and degree of cataracts in their eyes in the more radioactive areas. Nowadays, we see higher rates of cataracts in flight crews who spend a lot of time in airplanes, which expose them to extra radiation. And people who work in radiology fields are more likely to show increased prevalence and degree of cataract formation in their eyes.”

Continue reading at the University of South Carolina.

Global Climate Change
Environment Ethics
Environment Justice

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s