Daily Archives: July 15, 2014

The Good, the Bad and the Anthropocene (Age of Us)

By ANDREW C. REVKIN July 7, 2014 1:39 pmJuly 7, 2014 1:39 pm

Protesters warmed up by a fire at the end of futile climate treaty negotiations in Copenhagen in 2009. They were burning wood from their signs.Credit Andrew C. Revkin

Nathanael Johnson, Grist’s excellent food and sustainability blogger, offer to mediate a conversation between the ethicist and author Clive Hamilton and me over our differing views of this age of us, known increasingly as the Anthropocene.

Here’s a snippet, but I encourage you to follow the link at the end to catch the full discussion:

…(read more).

Global Climate Change
Environment Ethics
Environment Justice

Earth Ice Age Eras


Published on Dec 12, 2013

A look at past Ice Age eras that Earth has experienced throughout its existence; how the slightest changes in the planet’s orbit and angle of rotation can bring them about; how long they can last, and when the Earth will endure another.

An ice age, or more precisely, a glacial age, is a period of long-term reduction in the temperature of the Earth’s surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Within a long-term ice age, individual pulses of cold climate are termed “glacial periods” (or alternatively “glacials” or “glaciations” or colloquially as “ice age”), and intermittent warm periods are called “interglacials”. Glaciologically, ice age implies the presence of extensive ice sheets in the northern and southern hemispheres. By this definition, we are still in the ice age that began 2.6 million years ago at the start of the Pleistocene epoch, because the Greenland, Arctic, and Antarctic ice sheets still exist.

There are three main types of evidence for ice ages: geological, chemical, and paleontological.

Geological evidence for ice ages comes in various forms, including rock scouring and scratching, glacial moraines, drumlins, valley cutting, and the deposition of till or tillites and glacial erratics. Successive glaciations tend to distort and erase the geological evidence, making it difficult to interpret. Furthermore, this evidence was difficult to date exactly; early theories assumed that the glacials were short compared to the long interglacials. The advent of sediment and ice cores revealed the true situation: glacials are long, interglacials short. It took some time for the current theory to be worked out.

The chemical evidence mainly consists of variations in the ratios of isotopes in fossils present in sediments and sedimentary rocks and ocean sediment cores. For the most recent glacial periods ice cores provide climate proxies from their ice, and atmospheric samples from included bubbles of air. Because water containing heavier isotopes has a higher heat of evaporation, its proportion decreases with colder conditions. This allows a temperature record to be constructed. However, this evidence can be confounded by other factors recorded by isotope ratios.

The paleontological evidence consists of changes in the geographical distribution of fossils. During a glacial period cold-adapted organisms spread into lower latitudes, and organisms that prefer warmer conditions become extinct or are squeezed into lower latitudes. This evidence is also difficult to interpret because it requires (1) sequences of sediments covering a long period of time, over a wide range of latitudes and which are easily correlated; (2) ancient organisms which survive for several million years without change and whose temperature preferences are easily diagnosed; and (3) the finding of the relevant fossils.

Despite the difficulties, analysis of ice core and ocean sediment cores[citation needed] has shown periods of glacials and interglacials over the past few million years. These also confirm the linkage between ice ages and continental crust phenomena such as glacial moraines, drumlins, and glacial erratics. Hence the continental crust phenomena are accepted as good evidence of earlier ice ages when they are found in layers created much earlier than the time range for which ice cores and ocean sediment cores are available.

In 1742 Pierre Martel (1706–1767), an engineer and geographer living in Geneva, visited the valley of Chamonix in the Alps of Savoy. Two years later he published an account of his journey. He reported that the inhabitants of that valley attributed the dispersal of erratic boulders to the fact that the glaciers had once extended much farther. Later similar explanations were reported from other regions of the Alps. In 1815 the carpenter and chamois hunter Jean-Pierre Perraudin (1767–1858) explained erratic boulders in the Val de Bagnes in the Swiss canton of Valais as being due to glaciers previously extending further. An unknown woodcutter from Meiringen in the Bernese Oberland advocated a similar idea in a discussion with the Swiss-German geologist Jean de Charpentier (1786–1855) in 1834. Comparable explanations are also known from the Val de Ferret in the Valais and the Seeland in western Switzerland and in Goethe’s Scientific Work. Such explanations could also be found in other parts of the world. When the Bavarian naturalist Ernst von Bibra (1806–1878) visited the Chilean Andes in 1849–1850 the natives attributed fossil moraines to the former action of glaciers.

Global Climate Change
Environment Ethics
Environment Justice

Documentary – PERMIAN MASS EXTINCTION – The Day the Earth Nearly Died


Published on Jun 10, 2013

Documentary – PERMIAN MASS EXTINCTION – The Day the Earth Nearly Died

Global Climate Change
Environment Ethics
Environment Justice

Abrupt Climate Change In The Arctic (And Beyond) An Update


Published on Dec 21, 2013

Follow ClimateState on facebook for climate research https://www.facebook.com/ClimateState

AGU Fall Meeting 2013

Our understanding of future Arctic change is informed by the history of past changes, which often have been both large and abrupt. The well-known ice-age events such as the Younger Dryas show how sea-ice changes can amplify forcing to produce very large responses, with wintertime sea ice especially important. These changes are increasingly seen to have played a central role in the ice-age cycling through their global impact on CO2 storage in the deep ocean.

The Heinrich events reveal processes of ice-sheet/ocean interaction, some of which are being played out in Greenland and Antarctica now, and which may have large future effects on sea-level rise. The paleoclimatic record plus physical understanding greatly reduce the worst worries about instabilities from methane stored in cold places, but tend to support a role in amplifying future warming.

Overall, the very large impacts of past Arctic changes, and the likelihood that future changes under business-as-usual fossil-fuel emissions will be unprecedented in combined size and speed, raise important questions.
Release URL http://virtualoptions.agu.org/media/G…

Global Climate Change
Environment Ethics
Environment Justice