New York’s Court of Appeals ruled in favor of anti-fracking activists Monday, saying local leaders have the authority to ban hydraulic fracturing within their municipalities. Environmentalists are now shifting their attention to the statewide moratorium banning the practice, which Gov. Andrew Cuomo must soon decide whether to lift or keep in place. RT’s Manila Chan discusses what is next in the environmentalists’ fight with Earth Justice attorney Deborah Goldberg.
Health ministers from across West Africa are attending an emergency conference in Ghana to discuss the regional outbreak of Ebola virus disease. The World Health Organization says the highly infectious disease has killed more than 400 people in Guinea, Liberia and Sierra Leone. Henry Ridgwell reports for VOA from London.
For more information about the event and to listen to the podcast go to the RSA event page: http://bit.ly/1mQFvSL
Watch John Ryley as he discusses the future of news. Exploring how a digital tomorrow will allow audiences to consume news when they want it, how they want it, and where they want it and asking how traditional journalistic values, new technology and changing consumer behaviour might have an impact on the gathering and delivery of news
Major construction begins at the second U.S Oil Sands’ tar sands strip mine. As many as 200 acres could be clearcut in this site. The company has paid their 2.2 million dollar bond to the Utah Division of Oil and Gas Mining (DOGM) and their operation has begun full force.
One of the greenhouse gases (GHGs) that Obama’s EPA Clean Power Plan doesn’t count is methane from leaks, for example, fracking leaks, fuel line leaks, transportation leaks, and so on. Yet methane (CH4) is one of the most powerful greenhouse gases known, though very short-lived (most atmospheric methane disappears in about 12 years, becoming CO2 and water vapor).
And one of the cornerstones of the idea that mankind still has a “carbon budget” — that we can still release even more CO2 and other greenhouse gases like methane, though a “limited” amount — is the idea that we can do a good job of modeling climate-changing feedbacks. We can do a good job of modeling some feedbacks, but we’re very bad at modeling others, and some feedbacks have so much randomness about them that modeling them becomes next to impossible.
For an example of seemingly good models that have gotten things drastically wrong, take a look at what 13 Arctic-ice models said about the ice melt rate (loss of ice is a feedback, since it’s cause by warming, and then feeds more warming back to the system):
Loss of summer Arctic sea ice, modeled vs. observed (source here; adapted from Fig. 1 here)
All of the fuzzy lines are predictions of various models using the assumptions of that model. The heavy black line is the mean of those models. The red line is observed loss. Note that today, we’re about at the place the IPCC models had us reaching 90 years from now. The observations peak at about 9 million square kilometers, and we’re now at about 3 million. When we reach 1 million square kilometers, the Arctic will be considered “ice free.” Not long after that, summer ice will go to actual zero. With increased warming, winter ice will go to zero also.
See why I’m always saying we’re “wrong to the slow side”? If you think a climate event will happen in some number of years, cut it in half, at least, and maybe in half again.
For an example of a process that’s almost impossible to model, consider the disappearance of Antarctic ice shelves. They don’t go gradually; they hang around, then go suddenly and in big chunks, as they have recently. We’ve crossed the point of no return on large parts of the Western Antarctic shelf. No one saw that coming when it did, and there was no way to model it. That system is just too complex, with too many unknowns.
A look at Yellowstone National Park and the caldera super volcano beneath it that is pushing up the land and long overdue for what could be a titanic eruption.
The Yellowstone Caldera is the volcanic caldera and supervolcano located in Yellowstone National Park in the United States, sometimes referred to as the Yellowstone Supervolcano. The caldera is located in the northwest corner of Wyoming, in which the vast majority of the park is contained. The major features of the caldera measure about 34 by 45 miles (55 by 72 km). The caldera formed during the last of three supereruptions over the past 2.1 million years. First came the Huckleberry Ridge eruption 2.1 million years ago, which created the Island Park Caldera and the Huckleberry Ridge Tuff. Next came the Mesa Falls eruption 1.3 million years ago, which created the Henry’s Fork Caldera and the Mesa Falls Tuff. Finally came the Lava Creek eruption 640,000 years ago, which created the Yellowstone Caldera and the Lava Creek Tuff.
Yellowstone is a new volcano that was created during a supereruption that took place 640,000 years ago. The caldera lies over a hotspot where light, hot, molten rock from the mantle rises toward the surface. While the Yellowstone hotspot is now under the Yellowstone Plateau, it previously helped create the eastern Snake River Plain (to the west of Yellowstone) through a series of huge volcanic eruptions. The hotspot appears to move across terrain in the east-northeast direction, but in fact the hotspot is much deeper than terrain and remains stationary while the North American Plate moves west-southwest over it.
Over the past 18 million years or so, this hotspot has generated a succession of violent eruptions and less violent floods of basaltic lava. Together these eruptions have helped create the eastern part of the Snake River Plain from a once-mountainous region. At least a dozen of these eruptions were so massive that they are classified as supereruptions. Volcanic eruptions sometimes empty their stores of magma so swiftly that they cause the overlying land to collapse into the emptied magma chamber, forming a geographic depression called a caldera. Calderas formed from explosive supereruptions can be as wide and deep as mid- to large-sized lakes and can be responsible for destroying broad swaths of mountain ranges.
The oldest identified caldera remnant straddles the border near McDermitt, Nevada-Oregon, although there are volcaniclastic piles and arcuate faults that define caldera complexes more than 60 km (37 mi) in diameter in the Carmacks Group of southwest-central Yukon, Canada, which is interpreted to have formed 70 million years ago by the Yellowstone hotspot. Progressively younger caldera remnants, most grouped in several overlapping volcanic fields, extend from the Nevada-Oregon border through the eastern Snake River Plain and terminate in the Yellowstone Plateau. One such caldera, the Bruneau-Jarbidge caldera in southern Idaho, was formed between 10 and 12 million years ago, and the event dropped ash to a depth of one foot (30 cm) 1,000 miles (1,600 km) away in northeastern Nebraska and killed large herds of rhinoceros, camel, and other animals at Ashfall Fossil Beds State Historical Park. Within the past 17 million years, 142 or more caldera-forming eruptions have occurred from the Yellowstone hotspot.
The loosely defined term ‘supervolcano’ has been used to describe volcanic fields that produce exceptionally large volcanic eruptions. Thus defined, the Yellowstone Supervolcano is the volcanic field which produced the latest three supereruptions from the Yellowstone hotspot; it also produced one additional smaller eruption, thereby creating West Thumb Lake 174,000 years ago. The three super eruptions occurred 2.1 million, 1.3 million, and 640,000 years ago, forming the Island Park Caldera, the Henry’s Fork Caldera, and Yellowstone calderas, respectively. The Island Park Caldera supereruption (2.1 million years ago), which produced the Huckleberry Ridge Tuff, was the largest and produced 2,500 times as much ash as the 1980 Mount St. Helens eruption. The next biggest supereruption formed the Yellowstone Caldera (640,000 years ago) and produced the Lava Creek Tuff. The Henry’s Fork Caldera (1.2 million years ago) produced the smaller Mesa Falls Tuff but is the only caldera from the Snake River Plain-Yellowstone (SRP-Y) hotspot that is plainly visible today.
Welcome to Transition Studies. To prosper for very much longer on the changing Earth humankind will need to move beyond its current fossil-fueled civilization toward one that is sustained on recycled materials and renewable energy. This is not a trivial shift. It will require a major transition in all aspects of our lives.
This weblog explores the transition to a sustainable future on our finite planet. It provides links to current news, key documents from government sources and non-governmental organizations, as well as video documentaries about climate change, environmental ethics and environmental justice concerns.
The links are listed here to be used in whatever manner they may be helpful in public information campaigns, course preparation, teaching, letter-writing, lectures, class presentations, policy discussions, article writing, civic or Congressional hearings and citizen action campaigns, etc. For further information on this blog see: About this weblog. and How to use this weblog.
Calendar – Click on Date for links entered on that Day