Greenhouse gas emissions implications of the Keystone XL pipeline | Stockholm Environment Institute

ABSTRACT

Climate policy and analysis often focus on energy production and consumption, but seldom consider the role of energy transportation infrastructure in shaping energy systems, energy use and related greenhouse gas emissions. The proposal to extend the Keystone XL pipeline, to connect Canadian oil sands production with refineries and ports in the Gulf of Mexico, has brought these issues to the fore. This paper looks how the pipeline might affect global GHG emissions, with particular focus on its potential to affect global oil consumption by increasing supply and thus decreasing prices – an aspect that has received remarkably little attention among existing Keystone assessments. We consider a range of possible outcomes, if the Keystone XL pipeline were not completed: 1) that the same amount of oil (100% of Keystone capacity) would reach the market anyway by other means; 2) that half of it would; or 3) that none would. For the latter case, we find that the pipeline’s impact on global oil prices, though modest (less than 1%), could be enough to increase global oil demand by 510,000 barrels per day, or 62% of Keystone XL capacity. Such an increase could boost global GHG emissions by as much as 93 million tCO2e per year in 2020. If only half of the oil were to otherwise reach the market, the impact would be roughly half that size. These findings suggest that the U.S. government should more closely examine the pipeline’s potential effect on oil markets before making a final decision. An advantage of a simple model such as the one we constructed – using publicly available supply curves and peer-reviewed demand elasticities – is that it is highly transparent, and allows one to gauge the magnitude of possible effects. Similar approaches could also be used to analyze other proposed fossil-fuel infrastructure projects.

Global Climate Change
Environmental Justice
Environment Ethics

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s